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Learning Aligned Image-Text Representations
Using Graph Attentive Relational Network

Ya Jing , Wei Wang, Liang Wang, Fellow, IEEE, and Tieniu Tan, Fellow, IEEE

Abstract— Image-text matching aims to measure the similar-
ities between images and textual descriptions, which has made
great progress recently. The key to this cross-modal matching
task is to build the latent semantic alignment between visual
objects and words. Due to the widespread variations of sentence
structures, it is very difficult to learn the latent semantic
alignment using only global cross-modal features. Many previous
methods attempt to learn the aligned image-text representations
by the attention mechanism but generally ignore the relationships
within textual descriptions which determine whether the words
belong to the same visual object. In this paper, we propose a
graph attentive relational network (GARN) to learn the aligned
image-text representations by modeling the relationships between
noun phrases in a text for the identity-aware image-text matching.
In the GARN, we first decompose images and texts into regions
and noun phrases, respectively. Then a skip graph neural network
(skip-GNN) is proposed to learn effective textual representations
which are a mixture of textual features and relational features.
Finally, a graph attention network is further proposed to obtain
the probabilities that the noun phrases belong to the image
regions by modeling the relationships between noun phrases. We
perform extensive experiments on the CUHK Person Description
dataset (CUHK-PEDES), Caltech-UCSD Birds dataset (CUB),
Oxford-102 Flowers dataset and Flickr30K dataset to verify the
effectiveness of each component in our model. Experimental
results show that our approach achieves the state-of-the-art
results on these four benchmark datasets.

Index Terms— Image-text matching, cross-modal retrieval,
person search, graph neural network.

I. INTRODUCTION

JOINTLY learning vision and language is a significant task
in the computer vision and pattern recognition community,

Manuscript received November 24, 2019; revised October 12, 2020 and
December 5, 2020; accepted December 14, 2020. Date of publication
January 8, 2021; date of current version January 18, 2021. This work was
supported in part by the National Key Research and Development Program of
China under Grant 2016YFB1001000, in part by the National Natural
Science Foundation of China under Grant 61976214 and Grant 61721004;
and in part by the Shandong Provincial Key Research and Development
Program (Major Scientific and Technological Innovation Project) under
Grant 2019JZZY010119. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Giulia Boato.
(Corresponding author: Wei Wang.)

Ya Jing and Wei Wang are with the National Laboratory of Pattern Recogni-
tion, Center for Research on Intelligent Perception and Computing, Institute of
Automation, Chinese Academy of Sciences (CASIA), Beijing 100190, China,
and also with the University of Chinese Academy of Sciences, Beijing 100044,
China (e-mail: ya.jing@cripac.ia.ac.cn; wangwei@nlpr.ia.ac.cn).

Liang Wang and Tieniu Tan are with the National Laboratory of Pattern
Recognition, Center for Research on Intelligent Perception and Computing,
Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing
100190, China, also with the University of Chinese Academy of Sciences,
Beijing 100044, China, and also with the Center for Excellence in
Brain Science and Intelligence Technology, Institute of Automation,
Chinese Academy of Sciences (CASIA), Beijing 100190, China (e-mail:
wangliang@nlpr.ia.ac.cn; tnt@nlpr.ia.ac.cn).

Digital Object Identifier 10.1109/TIP.2020.3048627

Fig. 1. Challenges in identity-aware image-text matching. (1) The misalign-
ment between textual descriptions that describe the same image due to the
sentence structure variation. (2) The latent semantic alignment between image
regions and noun phrases needs to be reasoned.

which has drawn great attention in recent years. There are
various research tasks in this field, e.g., image-text
retrieval [1]–[3], visual question answering [4], [5], and
image captioning [6], [7]. Great progress has been made with
the development of deep learning. Despite these advances,
cross-modal matching remains to be solved due to the semantic
gap between vision and language. In this paper, we study
the task of identity-aware image-text matching which aims to
search images of the same identity as text queries and retrieve
texts describing the same identity as image queries.

However, there are several challenges for this task. First,
complex relations between language descriptions and image
appearances are highly non-linear, e.g., the corresponding rela-
tions between noun phrases and image regions. Second, people
generally describe the same image with different orders of
descriptions due to their different concerns. As seen in Fig. 1,
both sentences describe the middle image, but they are not
aligned well. The left text describes the t-shirt first while the
right one describes the hair first. Due to the recurrent encoding
manner in texts, different sentence structures will result in
different textual features though they have the same semantic
meaning. In a word, directly using the unaligned features
which do not explore the sematic alignment between image
and text for matching is not suitable. Therefore, the challenge
of this task lies in learning aligned cross-modal features.
Motivated by the similar observations, some prior methods
propose to use the attention mechanism to match image
regions with text words. Li et al. [2] propose a co-attention
approach which includes spatial attention and latent semantic
attention to learn the aligned features. Lee et al. [1] utilize
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Fig. 2. The framework of our proposed graph attentive relational network (GARN). We utilize a skip graph neural network (skip-GNN) to learn effective
textual representations which have relational features in addition to textual features. To further learn the latent semantic alignment between image regions
and noun phrases, we propose a graph attention network to obtain the probabilities that the noun phrases belong to the image regions. The global and local
matchings are utilized to supervise the learning of visual and textual representations. Both ranking loss and identification loss are employed to train our model,
which aims to minimize the intra-identity distance and maximize the inter-identity distance simultaneously.

a stacked cross attention between detected image regions and
words in sentences to infer the latent semantic alignment. But
these attention methods regard different words in sentences as
individuals and ignore the relationships between words which
determine whether the words belong to the same visual object.

To solve the problems above, here we propose a graph atten-
tive relational network (GARN) to learn the aligned image-text
representations by modeling the relationships between local
textual features. The framework of our model is shown
in Fig. 2. We first utilize a visual convolutional neural net-
work (CNN) [8] to extract visual feature maps. Then we
obtain horizontal representations by horizontal pooling. For
the textual input, we first extract noun phrases and then a
bi-directional long short-term memory (LSTM) [9] network
is employed to learn textual features. With the features of
noun phrases, a skip graph neural network is proposed, where
nodes in the graph represent the noun phrases in sentence
and edges represent the relationships between the nodes. This
skip graph neural network can learn a more effective textual
representation by combining the textual features with the
relational features. To learn the aligned image-text represen-
tations, we propose a graph attention network to learn the
corresponding relationships between image regions and noun
phrases. This attention network learns the probabilities that
the noun phrases belong to the image regions by modeling
the relationships between noun phrases. When training the
model, we perform not only the global matching but also the
local matching to learn more discriminative representations.
In addition, both pair-wise ranking loss and identification
loss are used to jointly minimize the intra-identity distance
and maximize the inter-identity distance. To demonstrate the
effectiveness of the proposed model, we perform experiments
on four identity-aware cross-modal matching datasets: CUHK
Person Description (CUHK-PEDES) [10], Caltech-UCSD

Birds (CUB) [3], Oxford-102 Flowers [3] and Flickr30K [11],
and achieve the state-of-the-art results.

The main contributions of our work are four-fold:
• We propose a novel graph attentive relational net-

work (GARN) to learn the aligned image-text representations.
• The novel skip graph neural network aims to learn

effective textual representations by integrating textual features
with relational features.
• We model the latent visual-semantic alignments by a

novel graph attention network, which explicitly models the
relationships between noun phrases.
• Our GARN achieves the best performance on four chal-

lenging benchmarks, which verifies the effectiveness of our
model.

The remainder of this paper is organized as follows.
In Section II, we introduce related work of image-text match-
ing, identity-aware image-text matching and graph neural
network. In Section III, we introduce our GARN model in
detail. We present experimental results in Section IV. Finally,
we conclude our work in Section V.

II. RELATED WORK

In this section, we introduce the related works, including
image-text matching, identity-aware image-text matching and
graph neural network.

A. Image-Text Matching

There are many studies exploring mapping the whole image
and full sentence to a common feature space for image-text
matching [12]–[14]. Kiros et al. [12] are the first to learn
cross-modal representations with a hinge-based triplet ranking
loss, where images are encoded by deep Convolutional Neural
Networks (CNN) and textual descriptions are encoded by
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Recurrent Neural Networks (RNN) [15]. Faghri et al. [13]
propose the hard negatives in the triplet loss function and
obtain significant gains in retrieval performance. Gu et al. [14]
propose to incorporate generative models into textual-visual
features embedding for cross-modal retrieval. To explore
the latent vision-language correspondence between image
and text, many works employ the attention mechanism
to image-text matching. Huang et al. [16] propose a
semantic-enhanced image and sentence matching model,
which improves the image representation by learning semantic
concepts. Lee et al. [1] propose a stacked cross attention model
to discover the full latent alignments using both image regions
and words in sentence as context and infer the image-text
similarity. Different from them, we consider to model not only
the corresponding relationships between image regions and
noun phrases but also the internal relationships between noun
phrases and then learn the aligned image-text representations.

B. Identity-Aware Image-Text Matching

Although identity-level annotations are widely used in
visual matching tasks, such as person re-identification [17],
[18] and face recognition [19]–[21], there are few studies of
visual-textual matching. Reed et al. [3] collect two datasets
with identity-level annotations, namely Caltech-UCSD Birds
dataset (CUB) and Oxford-102 Flowers dataset [22]. And they
are the first to use identity annotations to learn the image and
text features for cross-modal matching. Li et al. [10] propose
a CUHK Person Description dataset with identity information,
which aims to search corresponding person images by the
natural language queries. They further employ a CNN-LSTM
network with gated neural attention for this task, but they do
not effectively utilize the identity-level annotations. To exploit
the person identification, Li et al. [2] propose an identity-aware
two-stage network. First they utilize a Cross-Modal Cross-
Entropy loss to embed the input image and description to the
same feature space. Then a co-attention mechanism is utilized
to refine the network. Zheng et al. [23] propose an identifi-
cation loss for instance-level image-text matching. Zhang and
Lu [24] propose a cross-modal projection classification loss
to classify the projection of the features from one modality
onto the matched features from another modality rather than
categorize the original feature representations. These methods
show that combining the ranking loss and identification loss
can minimize the intra-identity distance and maximize the
inter-identity distance simultaneously, so we choose these two
loss functions to train our model. In contrast to them, we focus
on learning the latent semantic alignment between image and
text.

C. Graph Neural Network

Graph neural networks are generally used to handle
graph-structured data, which can be divided into two cate-
gories. The first class applies Convolutional Neural Networks
to graph [25]–[27]. Shen et al. [28] create a graph to represent
the pairwise relationships between probe-gallery person image
pairs (nodes) and utilize such relationships to update the
probe-gallery relational features in an end-to-end manner.

Yan et al. [29] employ the context information for per-
son search and build a graph learning framework to effec-
tively employ context pairs to update the target similarity.
Ying et al. [30] propose a differentiable graph pooling module
that can generate hierarchical representations of graphs and
can be combined with various graph neural network archi-
tectures in an end-to-end fashion. The second class applies
recurrent neural networks to every node of the graph. The
messages from the neighbour graph nodes are accumulated
and propagated to the nodes, which model the relationships
between nodes. There are many studies on the updating of the
node hidden state. Scarselli et al. [31] propose a multi-layer
perceptrons (MLP) to update the hidden state. Gated Graph
Neural Network (GGNN) [32] uses gated recurrent units to
update the hidden state. Liang et al. [33] update the hidden
state based on LSTM. Palm et al. [34] propose recurrent rela-
tional networks in a graph to solve the multi-steps relational
reasoning task. Qi et al. [35] use 3D graph neural network
for semantic segmentation. Si et al. [36] use a graph neural
network for skeleton-based action recognition. In this paper,
we propose a graph attentive relational network to learn the
aligned image-text representations.

III. OUR MODEL

In this section, we introduce the graph attentive relational
network (GARN) in detail. To learn a more effective tex-
tual representation, we propose a skip graph neural network.
In addition, we propose a graph attention network to learn the
latent semantic alignment between image regions and noun
phrases. Besides local matching, the global matching is also
employed to learn the global discriminative representations.
Finally, we employ a combination of identification loss and
pair-wise ranking loss to train the GARN.

A. Visual and Textual Feature Extraction

1) Visual Description: Given an image I , we extract the
visual feature using a visual CNN. The image features φ′(I ) ∈
Rm′×n×d are obtained before the last pooling layer of the
visual CNN. Then we partition the φ′(I ) into m horizontal
stripes. In each stripe, the vectors in same column are averaged
into a single column vector. The φ′(I ) is then transformed into
φ(I ) ∈ Rm×n×d where m×n×d means there are m×n regions
and each region is represented by a d-dimensional vector. The
global visual representation ψ(I ) ∈ Rd is defined as follows:

ψ(I ) = avgpool(φ(I )), (1)

where avgpool means average pooling along m × n regions.
The local part features V (I ) are gained by average pool-
ing the φ(I ) along the column vector, where V (I ) =
{v1, v2, . . . , vm}, vi ∈ Rd . Note that we only utilize the
horizontal features for CUHK-PEDES dataset. For the CUB,
Flower and Flickr30K datasets, due to the fact that they do
not have similar discriminative horizontal features as CUHK-
PEDES, we obtain the local part features V (I ) by dividing
the image features φ′(I ) into m′ × n visual features.
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Fig. 3. The illustration of extracting noun phrases from the textual descrip-
tion. We first utilize word-level tokenization and part-of-speech tagging, then
extract noun phrases by chunking. Particularly, we extract two kinds of the
phrases, e.g., NN and JNP.

2) Textual Description: Given a text T , we first represent
every word as a D-dimensional one-hot vector. The j -th word
is denoted as w j ∈ RD , where D is the vocabulary size. Then
the word is embedded to a p-dimensional vector through an
embedding matrix We:

x j = Wew j , j ∈ [1, z], (2)

where z represents the number of words in text T . Based on
the embedding vector, we encode them through a bi-directional
long short-term memory network (bi-LSTM) [9] which con-
tains a forward

−−−−→
LST M and a backward

←−−−−
LST M :

−→
h j = −−−−→LST M(x j ,

−−→
h j−1), j ∈ [1, z], (3)

←−
h j = ←−−−−LST M(x j ,

←−−
h j−1), j ∈ [1, z]. (4)

The LSTM unit inputs the current word embedding vector x j

and previous hidden state h j−1, and outputs the current hidden
state h j .

The global textual representation et is defined as the con-
catenation of the last hidden states

−→
hz and

←−
h1 :

et = concat (
−→
hz ,
←−
h1 ). (5)

3) Noun Phrase: For the given textual description, we uti-
lize the NLTK [37] to extract the noun phrase N . The
extraction procedure is shown in Fig. 3. Similar to tex-
tual description, for the j -th noun phrase n j in N =
(n1, n2, . . . , nq), we represent it according to Equations 2-5.
Therefore, we can obtain the representations of all noun
phrases en = (en

1 , en
2 , . . . , en

q). It should be noted that we
adopt the same bi-LSTM when encoding the global textual
description and noun phrase. Moreover, the number of noun
phrase q varies in different textual descriptions.

After obtaining the visual and textual features, the simplest
way of measuring the similarity between them is computing
the cosine score. But there are some problems as follows.
On one hand, directly utilizing the global unaligned fea-
tures cannot extract the latent correspondences between image
regions and noun phrases. On the other hand, the misalign-
ment between textual inputs will compromise the feature

learning and matching. We can see it in Fig. 1, the two
sentences are both describing the same image but they are
different in the describing way. Therefore, learning the aligned
image-text representations is of significant value. There are
many attention-based methods proposed to solve this problem.
They utilize visual (textual) features to focus on textual
(visual) features or co-attention. But these attention methods
regard different noun phrases in sentences as individuals and
ignore the relationships between them which is important to
determine whether they belong to the same visual region. For
example, the phone is usually held on the hand, so the noun
phrases “phone” and “hand” should be divided into the same
visual areas of the hand by modeling their relationship. There-
fore, the relationships between objects should be modeled for
effective matching.

Based on the above analysis, we propose to utilize the
graph neural network (GNN) which is excellent to model
the relationships between objects to learn aligned image-text
representations.

B. Skip-GNN for Textual Representation

First, we use graph neural network to learn effective textual
representations. The typical graph is composed of nodes that
represent the noun phrases in sentence and edges that represent
the relationships between the nodes. Given a set of nodes N
and their relationships R, the graph is defined as G = (N, R),
where N = {n1, n2, . . . , nq }. For the node k in a GNN,
the hidden state st

k at time step t is updated based on its
previous hidden state st−1

k and message ηt
k received from

its neighborhoods �k in a recurrent way. All the nodes are
updated simultaneously. Therefore, the formulation of GNN is
defined as follows:

ηt
k = f ({st−1

k′ |k ′ ∈ �k}), (6)

st
k = g(ηt

k, st−1
k ), (7)

where f is the message passing function, and g is the node
updating function.

In this work, considering that the great success achieved
by ResNet and UNet indicates that skip connection is very
effective for model optimization and performance improve-
ment, we propose a skip-GNN to model the relationships
between noun phrases as well as their initial features encoded
by bi-LSTM. The initial features en = (en

1 , en
2 , . . . , en

q) are fed
to skip-GNN as the initial inputs. Fig. 4 shows the structure
and updating mechanism of our fully-connected skip-GNN
model with four nodes for simplicity. We can see that at
time step t , the k-th node inputs an input feature at−1

k and a
message ηt

k . We initialize a0
k with the initial feature of noun

phrase en
k , so that:

a0
k = Waen

k + ba, (8)

where Wa is the input embedding matrix. Because the node
has different relationships with different neighborhood nodes,
we utilize the previous hidden state of neighborhood node to
define the message. Therefore, the nodes with similar features
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Fig. 4. The illustration of the proposed structure and updating mechanism
of the fully-connected skip graph neural network. The nodes s are updated
by the passing messages η and input features a in a recurrent way. The skip
connection means the connection between at−1 and at .

are more closely related to each other.

ηt
k, j = Wmst−1

j + bm, (9)

ηt
k =

∑
j∈�k

ηt
k, j , (10)

where Wm is the shared message embedding matrix, and ηt
k

represents the whole received messages. Then we concatenate
the ηt

k and at−1
k as the final input message. So the nodes

can receive the messages from not only their neighbours but
also their own initial features. With the obtained message,
the hidden state of the node can be updated:

st
k = g(concat (ηt

k, at−1
k ), st−1

k ), (11)

where g indicates the node updating function which is similar
to the LSTM unit:

f t
k = σ(W f · [st−1

k , ηt
k , at−1

k ] + b f ), (12)

i t
k = σ(Wi · [st−1

k , ηt
k, at−1

k ] + bi ), (13)

C̃t
k = tanh(WC · [st−1

k , ηt
k , at−1

k ] + bC), (14)

Ct
k = f t

k ∗ Ct−1
k + i t

k ∗ C̃t
k, (15)

ot
k = σ(Wo · [st−1

k , ηt
k, at−1

k ] + bo), (16)

st
k = ot

k ∗ tanh(Ct
k), (17)

where W f , b f ,Wi , bi ,WC , bC ,Wo, bo are the learned parame-
ters. It’s worth noting that these parameters are shared among
different nodes.

Then we update the input feature as follows:
at

k = at−1
k + st

k . (18)

As the node features are updated after every time step, this
input feature can fuse the initial textual features with node
relational features by skip connection between at

k and at−1
k .

After iterating the message passing for T steps, we compute
the final fusion representations as:

pk = WpaT
k + bp, (19)

where Wp is an output embedding matrix.

Due to the fact that the number of noun phrase q varies
in different textual descriptions, for textual description with
fewer noun phrases than the number of nodes in skip-GNN,
we set the hidden states, input messages, and output messages
of all unused nodes to zero at every time step to make sure
that they cannot receive or send any information.

C. Graph Attention Network for Image-Text Alignment

The relationships between noun phrases indicate whether
they belong to the same visual region. To obtain the prob-
abilities that the noun phrases belong to the image regions,
we propose a graph attention network by modeling the rela-
tionships between noun phrases.

The graph attention network aims to learn the attention
matrix over the nodes of skip-GNN model, which can extract
the node embeddings that are corresponding to specific image
regions. We first describe the generation of the attention matrix
using a GNN architecture and then discuss attention procedure
given the attention matrix.

We generate the attention matrix by a typical GNN as
follows:

A = so f tmax(G N Natt (e
n)), (20)

where G N Natt means the same operation as Equations 6 and
7, the softmax function is applied in a row-wise fashion. en is
the noun phrase features, which is fed to the typical GNN. The
output dimension of G N Natt corresponds to the pre-defined
number m. Therefore, the attention matrix A ∈ Rq×m .

With the attention matrix, we discuss the attention pro-
cedure. Each row of A corresponds to one of the q noun
phrase representations from skip-GNN and each column of A
corresponds to one of the image regions, which provides a soft
assignment of each noun phrase representation to the image
regions. With the computed A, we perform the following
operation:

Att = AT P, Att ∈ R
m×2l , (21)

where attention matrix A aggregates the noun phrase repre-
sentations P = {p1, p2, . . . , pq} to the part-level cluster, l is
the hidden dimension of the bi-LSTM in textual representation
learning.

D. Local and Global Matching

With the learned aligned image-text representations,
we measure the local similarity between image regions and
noun phrases. First, we transform the image region fea-
tures V (I ) and attended noun phrase representations Att into
the same feature space:

ṽi = Wv v
i , (22)

ãt ti = Wattatti , i = 1, 2, . . . ,m, (23)

where Wv ∈ Rb×d and Watt ∈ Rb×2l are two transformation
matrices, and b is the dimension of the transformed feature
space. The atti represents the i -th row vector of Att .
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Then, the local similarity between image region and noun
phrase is defined as:

si = cos(ṽi , ˜atti ), i = 1, 2, . . . ,m, (24)

Sl =
m∑

i=1

si , (25)

where cos represents the cosine function.
Besides local matching, the global matching is also utilized

to measure their global similarity. We calculate the global
correlation between global visual representation ψ(I ) and
textual representation et .

We first transform global visual representation ψ(I ) and
textual representation et to the same feature space as follows:

ẽt = Wet et , (26)

ψ̃(I ) = Wψψ(I ), (27)

where Wet ∈ Rb×2l and Wψ ∈ Rb×d are two transformation
matrices.

The global similarity is then computed as follows:
Sg = cos(ψ̃(I ), ẽt ). (28)

E. Learning Procedure

The pair-wise ranking loss is the common loss function
used in the matching task, which aims to ensure the positive
pair being closer than the negative pair. Many previous works
randomly select the negative pair from the dataset and ignore
the influence of other negative samples in a mini-batch. In this
paper, we follow the method [13] to focus the hardest nega-
tive sample in a mini-batch. Given a positive pair (Ip, Tp),
the hardest negative pair is defined as follows:

T̂h = argmaxt �=T S(I, t), (29)

Iĥ = argmaxi �=I S(i, T ), (30)

where T̂h is the hardest text sample for the image Ip and Iĥ
is the hardest image sample for the text Tp. Therefore, our
ranking loss is defined as:

Lr (I, T ) = max(α − S(I, T )+ S(I, T̂h), 0)

+max(α − S(I, T )+ S(Iĥ , T ), 0), (31)

where α is a margin. This loss function ensures the positive
pair being closer than the hardest negative pair which may
determine success or failure as measured by top-1 accuracy.
For our global matching score, we can obtain a global ranking
loss Lg

r .
Besides ranking loss, the identification loss is also adopted

for the identity-level matching. The global image and text
identification losses Lg

i and Lg
t are defined as follows:

Lg
i = −yidlog(so f tmax(W g

id ψ̃(I ))), (32)

Lg
t = −yidlog(so f tmax(W g

id ẽt)), (33)

where Wid is the transformation matrix to categorize the
feature representations, yid is the ground truth identity, Lg

i
and Lg

t are the global visual and textual identification losses,
respectively.

Then the total global loss is defined as:
Lg = Lg

r + λ1 Lg
i + λ2 Lg

t , (34)

Similarly, we can obtain the total local loss Ll . λ is the
hyperparameter to control the relative importance of each loss
function.

The final loss function is defined as:
L = Lg + λ3 Ll . (35)

At the test stage, we compute the total similarity S between
the image-text pair for retrieval evaluation, which is defined
as follows:

S = Sg + λ3Sl . (36)

IV. EXPERIMENTS

In this section, we first introduce the experimental datasets.
Then, we present the implementation details. Next, we com-
pare the proposed method with the state-of-the-art methods
and several baselines. Finally, we visualize and analyze the
retrieval results.

A. Datasets

We choose four identity-aware cross-modal matching
benchmark datasets to validate the effectiveness of the pro-
posed GARN.

1) CUHK-PEDES Dataset: The CUHK-PEDES dataset
[10] is collected from five existing person re-identification
datasets, CUHK03 [38], Market-1501 [39], SSM [40],
VIPER [41], and CUHK01 [42], as the subjects for language
descriptions. All the images were labeled by crowd workers
from Amazon Mechanical Turk (AMT). As a result, the
CUHK-PEDES dataset contains 40,206 images and
80,440 textual descriptions of 13,003 identities. We follow the
same data split as [10]. The training set has 11,003 persons,
34,054 images and 68,126 textual descriptions. The validation
set has 1,000 persons, 3,078 images and 6,158 textual
descriptions. The test set has 1,000 persons, 3,074 images and
6,156 textual descriptions. On average, each image contains
2 different textual descriptions and the textual descriptions
contain more than 23 words. We choose top-1, top-5 and
top-10 accuracies to evaluate the performance of person
search with natural language description. Specifically, given a
query text, all test images are ranked by the similarities with
the text. If the corresponding images are within the top-k
images, we regard it as a successful search.

2) CUB and Flower Datasets: The Caltech-UCSD Birds
(CUB) [3] dataset contains 11,788 bird images, which are
categorized into 200 classes. Each image is described by
ten sentences. The dataset is split into 100 categories for
training, 50 categories for validation, and 50 categories
for test. On average, the textual descriptions contain more
than 17 words. The Oxford-102 Flowers [3] dataset has
8,189 flower images categorized into 102 classes. Each image
is also described by ten sentences. There are 62 categories
for training, 20 categories for validation, and 20 categories
for test. On average, the textual descriptions contain more
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TABLE I

SUMMARY STATISTICS OF FOUR DATASETS (CUHK-PEDES, CUB, FLOWER AND FLICKR30K)

than 14 words. The experimental setup is the same as [3].
We choose AP@50 to evaluate the text-to-image retrieval
performance and top-1 accuracy to evaluate the image-to-text
retrieval performance. The AP@50 represents the percent of
top-50 ranked images whose class matches that of the text
query, averaged over all the test classes.

3) Flickr30K Dataset: The Flickr30K [11] contains
31,783 images and each image is annotated with five descrip-
tions. The average sentence length is 11 words. We follow
the same split in [13] to use 29,783 images for training,
1,000 images for validation and 1,000 images for testing.

Table I shows the summary statistics of these four datasets.

B. Implementation Details

For the CUHK-PEDES dataset, we perform experiments
with VGG-16 [43], ResNet-50 [44] and MobileNet [45] as
the visual CNN. The input images are resized to 384 × 128,
with a height to width ratio of 3:1. We set the visual features
to m = 6 horizontal stripes inspired by [46]. To compare with
previous methods fairly, we choose GoogleNet [47] as the
visual CNN for the CUB and Flower datasets. The images are
resized to 299 × 299. For the Flickr30K dataset, we choose
ResNet-152 [44] as the visual CNN. The images are resized to
224×224. Due to the fact that the CUB, Flower and Flickr30K
datasets do not have similar discriminative horizontal features
as CUHK-PEDES, we use the image features φ′(I ) to compute
the local similarity. For all the four datasets, a l = 1024
dimensional bi-LSTM is used to extract the textual feature.
We embed the word to a p = 300 dimensional vector and
set the dimension b of the transformed feature space as 1024.
In graph neural network, the iteration steps T in skip graph
neural network and graph attention network are set to 3 and 2,
respectively.

During training, we first fix the visual CNN and train the
other parts with learning rate lr = 2e−3, and then train
the whole model with learning rate lr = 2e−4. The Adam
optimizer [48] is employed for optimization and the margin is
set to 0.2. The identity classes are only used for training.

To exploit the influences of λ1, λ2 and λ3, we set them to
{0.1, 0.2, 0.5, 0.7, 1, 2, 5, 7, 10} and find that the model with
λ1 = 1, λ2 = 1, λ3 = 2 obtains the best performance on the
validation set.

C. Experimental Results

1) Results on the CUHK-PEDES Dataset: We compare
our proposed GARN with the state-of-the-art methods on the
CUHK-PEDES dataset. Table II shows the results of top-1,
top-5 and top-10 accuracies with three different visual
CNNs (VGG-16, ResNet-50, Mobilenet). Considering that this

TABLE II

COMPARISON RESULTS WITH THE STATE-OF-THE-ART METHODS ON

CUHK-PEDES. TOP-1, TOP-5 AND TOP-10 ACCURACIES (%) OF

TEXT-TO-IMAGE RETRIEVAL RESULTS ARE REPORTED. THREE
TYPES OF VISUAL CNN ARE UTILIZED, E.G., VGG-16,

RESNET-50, AND MOBILENET. THE BEST PERFORMANCE

IS BOLD. “-” REPRESENTS THAT THE
RESULT IS NOT PROVIDED

dataset is designed to search the corresponding person images
to the textual description, we only show the text-to-image
retrieval results. Overall, it can be seen that the proposed
GARN achieves the best performances in terms of VGG-16,
ResNet-50 and Mobilenet. Specifically, when comparing with
the best competitor Dual Path [23] using VGG-16 and
ResNet-50 to extract visual representation, our GARN sig-
nificantly outperforms it by about 14% with the VGG-16
feature and 8% with the ResNet-50 feature, respectively.
The improved performances over the best competitor indicate
that our GARN is very effective for this task. Although
CMPM+CMPC [24] achieves the best result (49.37%) by
virtue of Mobilenet, our GARN with the same setting still
improves the performance by 3.4% in top-1 accuracy. Com-
pared with the methods (PWM-ATH [49], GNA-RNN [10],
GLA [50] and IATV [2]) which aim to align image and text
representations by either utilizing the textual representation
to focus on the visual unit or employing a co-attention to
select both visual and textual representations, our GARN
also achieves better performances under three evaluation
metrics. The improved performances illustrate the superior-
ities of our graph attentive relational network in learning
aligned image-text representations by modeling the relation-
ship between noun phrases.

2) Results on the CUB and Flower Datasets: Table III
and table IV show the retrieval results on the CUB and
Flower datasets, respectively. Considering that we use the
bi-directional losses in our experiments, we choose the sym-
metric results of the existing methods for fair compari-
son. It should be noted that except CMPM+CMPC with
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TABLE III

COMPARISON RESULTS WITH THE STATE-OF-THE-ART METHODS ON
CUB DATASET. THE ACCURACY (%) OF IMAGE-TO-TEXT (TOP-1)

AND TEXT-TO-IMAGE (AP@50) RETRIEVAL RESULTS ARE

REPORTED. THE BEST PERFORMANCE IS BOLD

Mobilenet in [24], the other methods utilize GooleNet as
visual CNN. The BoW [52], Word2Vec [53], Word CNN [3],
Word CNN-RNN [3], and GMM+HGLMM [54] use different
types of textual representations. For our GARN, a bi-LSTM
is used to represent the textual input. The Triplet [2] employs
a triplet loss to train the model, but the ABM [55] proposes
an angle-based loss function. CMPM+CMPC [24] employs
a combination of Cross-Modal Projection Matching (CMPM)
loss and Cross-Modal Projection Classification (CMPC) loss
to train the model while the IATV [2] proposes a co-attention
approach. Different from them, we propose a graph attentive
relational network to learn the aligned features and use the
ranking loss and identification loss to train the model. We can
see that our GARN achieves the state-of-the-art performances
on both CUB and Flower datasets, which are 69.7%, 71.8% in
top-1 accuracy for image-to-text retrieval and 69.4%, 72.4% in
AP@50 for text-to-image retrieval, respectively. This proves
the effectiveness of our proposed graph-based aligned feature
learning in identity-aware cross-modal matching task.

3) Results on the Flickr30K Dataset: Table V shows the
retrieval results on the Flickr30K dataset. For fair compar-
ison, we choose the existing methods (e.g., RRF-Net [56],
VSE++ [13], DAN [57], DPC [23] and SCO [16]) which
utilize the ResNet-152 as the visual backbone and do not uti-
lize the Faster-RCNN to detect objects like us. We can see that
the proposed GARN outperforms the previous methods, which
demonstrates the effectiveness of graph-based representations
learning for image-text matching.

D. Model Analysis

1) Ablation Studies: To systematically investigate the effec-
tiveness of each component in the proposed GARN, we per-
form a set of ablation studies on the CUHK-PEDES dataset.
It’s worth noting that we utilize ResNet-50 as the visual CNN.
Table VI shows the results. To make a better comparison,
we set a baseline model named Base, which employs a
ResNet-50 to extract the visual feature and a same bi-LSTM
as GARN to encode the textual input. Then an embedding

TABLE IV

COMPARISON RESULTS WITH THE STATE-OF-THE-ART METHODS ON
FLOWER DATASET. THE ACCURACY (%) OF IMAGE-TO-TEXT

(TOP-1) AND TEXT-TO-IMAGE (AP@50) RETRIEVAL RESULTS

ARE REPORTED. THE BEST PERFORMANCE IS BOLD

TABLE V

COMPARISON RESULTS WITH THE STATE-OF-THE-ART METHODS ON

FLICKR30K DATASET. TOP-1, TOP-5 AND TOP-10 ACCURACIES (%)
OF BI-DIRECTIONAL RETRIEVAL RESULTS ARE REPORTED.

THE BEST PERFORMANCE IS BOLD

TABLE VI

ABLATION ANALYSIS OF DIFFERENT COMPONENTS IN THE PROPOSED

GARN ON CUHK-PEDES. Lid INDICATES THE IDENTIFICATION LOSS.
SGNN REPRESENTS THE SKIP GRAPH NEURAL NETWORK IN LEARNING

EFFECTIVE TEXTUAL REPRESENTATION. G-ATTENTION INDICATES THE

GRAPH ATTENTION NETWORK IN LEARNING THE LATENT SEMANTIC

ALIGNMENT. GLOBAL INDICATES THAT THE GLOBAL FEATURES ARE
USED IN CROSS-MODAL MATCHING. S-ATTENTION MEANS THE

SIMILARITY-BASED ATTENTION. SINGLE-GRAPH INDICATES UTILIZING

A GRAPH NEURAL NETWORK TO PERFORM THE GRAPH ATTENTIVE
RELATIONAL LEARNING. RESNET-50 IS UTILIZED AS THE VISUAL CNN.

TOP-1, TOP-5 AND TOP-10 ACCURACIES (%) ARE REPORTED

layer is utilized to transform the cross-modal features into the
same feature space. Only the ranking loss Lr is used to train
the model.

We first investigate the importance of identification loss by
adding the visual and textual identification losses Li and Lt

to the baseline model, which is denoted as Base+Lid . It can
be seen that the top-1 accuracy rises 1.3% compared with
Base, which proves the effectiveness of identification loss in
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Fig. 5. Visualization of the attended noun phrases with respect to each image region on two examples from CUHK-PEDES by our proposed GARN. The
value indicates the attention strength.

benefitting identity-level matching. Then we investigate the
effectiveness of skip graph neural network in learning effective
textual representation by adding a skip graph neural network
into the Base+Lid , which is denoted as Base+Lid+SGNN.
The top-1 accuracy rises 1.6% compared with Base+Lid ,
which indicates that SGNN can help our model learn more
discriminative textual representation by modeling the relation-
ships between noun phrases and thus benefit the performances.
In addition, we perform the experiment with general graph
neural network to learn the textual representation but do not
obtain meaningful results. This is because the hardest ranking
loss in general GNN model is difficult to decrease if not
elaborating the initialization of the weight parameters. Con-
sidering that the skip connection is very effective for model
optimization and performance improvement (e.g., ResNet and
UNet), we add skip connection in our model. To investigate
the importance of graph attention network in learning latent
semantic alignment between visual and textual representa-
tions, we perform experiments on Base+Lid+G-Attention
and Base+Lid+SGNN+G-Attention, where G-Attention indi-
cates the graph attention network. The improved perfor-
mances prove that graph attention network benefits the
aligned cross-modal representations learning. We also perform
another attention mechanism namely similarity-based attention
(S-Attention) proposed in [1]. The results are inferior to
the G-Attention by 1.2% in top-1 accuracy. Due to the fact
that the two graph neural networks in Base+Lid+SGNN+
G-Attention are different, we also perform the experiment
utilizing the same graph neural network, which is denoted as
Base+Lid+Single-Graph. The results indicate that it is more
appropriate to use two graph neural networks to learn attention
matrix and textual representations, respectively. Since the
above learning is based on phrase-level matching, to exploit

different levels cross-modal matching, we add the global
matching into the Base+Lid+SGNN+G-Attention, which is
denoted as Base+Lid+SGNN+G-Attention+Global. It can
be seen that the top-1 accuracy rises 0.4% compared with
Base+Lid+SGNN+G-Attention, which proves that exploiting
different levels cross-modal matching is effective in image-
text matching by learning sufficient and diverse discrimina-
tive representations. In summary, the improved performances
demonstrate that identification loss, skip graph neural network,
graph attention network and different level features are all
effective for identity-aware image-text matching.

2) Message Propagation Analysis: The number of message
propagation T is an important hyperparameter, which deter-
mines the information transmitted between the noun phrases.
From the results reported in Table VII, we can see that increas-
ing T in skip graph neural network improves the prediction
performance and saturates soon. This is because noun phrases
are fully connected to each other, so the relationships between
them are learned quickly. Considering the performance and
running speed, we choose T = 3 in our experiments.

3) Qualitative Results: To verify whether the proposed
GARN can learn the aligned image-text representations by
the graph attentive relational network and make matching
procedure more interpretable, we visualize the attended noun
phrases with respect to each image region on CUHK-PEDES
in Fig. 5. For the two selected images, we split them horizon-
tally into six regions, and visualize the attention weights to
each noun phrase in textual descriptions “The man has on a
light colored t-shirt with dark pants, and light sneakers. he has
a large black backpack and glasses.” and “A man with short
black hair is wearing a black jacket, a pair of black pants, black
shoes and a black backpack”. We can see that the selected
noun phrases are indeed corresponding to the image regions,
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Fig. 6. Qualitative results of image retrieval given text queries on CUHK-PEDES dataset by two models (baseline and GARN). We show the top-10 retrieved
images for each query, which are sorted by their similarity scores with text. We outline the corresponding images in green boxes and unmatched images in
red boxes.

TABLE VII

THE COMPARISON RESULTS ON CUHK-PEDES DATASET IN

ACCURACY (%). WE COMPARE SEVERAL MODELS THAT

HAVE DIFFERENT TIME STEPS IN SKIP GRAPH
NEURAL NETWORK TO SHOW THE

IMPROVEMENTS ACHIEVED

AT EVERY STEP

which proves that our model can learn accurate latent semantic
alignment between image regions and noun phrases by the
graph attention mechanism. Specifically, in the first image,
the “glasses” receives strong attention with respect to the first
image region which is mainly about the head of person. For
the third region of the first image, the “man”, “light colored
t-shirt” and “large black backpack” receive strong attention
while “glasses” receives weaker attention weight. Similarly,
for the second image, our proposed GARN can also learn the

correspondence between image region and noun phrase. This
illustrates that our graph attention network learns interpretable
aligned cross-modal representations and generates reasonable
attention strength to weight noun phrases, which benefits the
inference of image-text similarity.

To better show the retrieval results of proposed GARN,
we perform several qualitative evaluations. Fig. 6 shows
the qualitative results of image retrieval given text queries
on CUHK-PEDES by two models (baseline and GARN).
We show the top-10 images which are ranked by the similarity
scores with text queries. The matched images are outlined
in green while the unmatched images are outlined in red.
As Fig. 6 shows, for all the four samples, our GARN retrieves
the corresponding images in the top-10 list. For the two
cases in the first row, the first three results retrieved by
both models are corresponding to the text query. This shows
that both models can learn discriminative features for easily
distinguishable samples. For the cases in the second and
third rows, our GARN achieves better performances for more
difficult samples. This demonstrates the effectiveness of our
GARN in identity-aware cross-modal matching. In addition,
all the images with the same identity as text appear in the
top-10 retrieved images, which demonstrates the effectiveness

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 24,2021 at 12:38:48 UTC from IEEE Xplore.  Restrictions apply. 



1850 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 7. Qualitative results of image retrieval given text queries and text retrieval given image queries on CUB and Flower datasets. We show the top-6 retrieved
images and top-5 retrieved texts for each query, which are sorted by their similarity scores with query. We outline the corresponding images in green boxes
and unmatched images in red boxes. And the unmatched texts are highlighted in red.

Fig. 8. The t-SNE visualization of image and text features learned by our proposed baseline, baseline+id and GARN on CUHK-PEDES dataset.

of our model in matching the visual and textual inputs of
the same identity. For the cases in the forth row, both models

capture the part matching, e.g., the person almost wear a “light
colored shirt” and “black slacks”. But for indistinguishable
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details “long light colored top”, our GARN can still capture
it and retrieve the correct result.

Similarly, we visualize the retrieval results of proposed
GARN on CUB and Flower. Fig. 7 shows the qualitative
results of image retrieval given text queries and text retrieval
given image queries. We show the top-6 retrieved images and
top-5 retrieved texts for each query, which are sorted by their
similarity scores with query. We outline the corresponding
images in green boxes and unmatched images in red boxes.
And the unmatched texts are highlighted in red. For the text
query cases in the first two rows, the top-6 ranked images
almost are corresponding to textual descriptions. The only
failure case mismatches the “only one large petal”. And for
the first three image query cases, the top-5 retrieved texts
are corresponding to images. The failure case mismatches the
center in flower. It’s worth noting that there are many more
images with the same identity in the CUB and Flower datasets
than in the CUHK-PEDES. Therefore, the visualization results
on CUB and Flower appear better.

We also visualize the distribution of cross-modal features
learned by our models (baseline, baseline+id and GARN) on
CUHK-PEDES dataset, which aims to figure out whether our
model can match the corresponding cross-modal features well.
Fig. 8 shows the t-SNE [58] visualization of the test feature
distribution. We randomly select seven identities and show all
corresponding images and texts. We can see that the learned
image-text features from all models are distributed along
radial spokes, where the corresponding visual and textual
features lie in the same direction. This is because we utilize
the cosine score to measure the similarity. Compared with
non-corresponding pairs, the corresponding image-text pairs
have larger cosine score. When adding the identification loss
to minimize the intra-identity distance, the learned features
are more aggregated with the same identity. Compared to
baseline+id model, the learned features by GARN with dif-
ferent identities are more differentiated along radial spokes,
which proves the effectiveness of our GARN in learning more
discriminative features by alignment.

V. CONCLUSION

In this paper, we propose a graph attentive relational net-
work to learn the aligned image-text representations for the
identity-aware image-text matching. Our main contributions
are improving the textual representation and learning the
semantic alignment between image and text by modeling the
relationships between noun phrases. These are accomplished
by skip graph neural network and graph attention network,
respectively. In the matching procedure, both the global match-
ing and local matching are utilized to learn more discriminative
representations. We perform extensive experiments on four
identity-aware datasets, and the experimental results show that
our approach achieves much better performances than the
state-of-the-art methods, which verifies the effectiveness of our
GARN in identity-aware image-text matching.
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